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Lecture 22: November 18

In the definition of polarized Hodge modules, we needed the induced pairings

hα : grαV M⊗ grαV M→ C

for −1 ≤ α ≤ 0. The purpose of today’s lecture is to explain how these pairings
are constructed. We will focus on the case −1 < α ≤ 0, and exclude the (more
involved) case α = −1.

To get a feeling for the problem, let us go back to the example of a polarized
variation of Hodge structure on ∆∗. Here M = D∆ · Ṽ >−1, and for α > −1, the
V-filtration is given by V αM = Ṽ α. In particular,

grαV M∼= Eα(R),

where R ∈ End(V ) is the residue of the logarithmic connection on Ṽ α. The pairing
that appears in Schmid’s results, specifically in Theorem 10.3, is the restriction of
the hermitian pairing h : V ⊗C V → C to the eigenspace Eα(R). The question is
how we can recover this pairing from the pairing on the D-module M.

Recall from Lecture 9 that, with respect to the trivialization Ṽ α ∼= O∆ ⊗C V ,
the polarization of the variation of Hodge structure takes the form

hV (1⊗ v′, 1⊗ v′′) =
∑

α≤β<α+1

|t|2β
∞∑

j=0

L(t)j

j!
(−1)jh

(
v′β , R

j
Nv
′′
β

)
,

where v′β and v′′β are the components in Eβ(R). Since α > −1, all the functions in
this expression are locally integrable, and so the right-hand side is a distribution
on ∆; the sesquilinear pairing on M was defined in such a way that hM = hV on
V αM = Ṽ α for α > −1. The pairing on Eα(R), which is h(v′α, v

′′
α), appears in

this expression as the coefficient of the term |t|2α. So we need a way to extract this
particular coefficient from the distribution. If someone gives us a distribution with
an “asymptotic expansion” as above, in terms of the functions |t|2βL(t)j , then this
is easy: simply take the coefficient at |t|2α. But for arbitrary Hodge modules, we
need a construction that works even if we don’t have the asymptotic expansion.

The key idea, due in this context to Daniel Barlet and Claude Sabbah, is to
consider the function |t|2s−2, where s ∈ C is a complex parameter. This function is
locally integrable on the halfspace Re s > 0, but is not locally integrable for s = 0.
This sharp distinction gives us a way to pick out specific values of the exponent.
Indeed, if we consider the expression

|t|2s−2 ·
∑

α≤β<α+1

|t|2β
∞∑

j=0

L(t)j

j!
(−1)jh

(
v′β , R

j
Nv
′′
β

)
,

then all the terms with β > α are locally integrable on a halfspace of the form
Re s > −β, whereas the terms with |t|2α stop being locally integrable at s = −α.

We also need a way to distinguish the term |t|2α from the other terms |t|2αL(t)j

with j ≥ 1. Here the general idea is to consider the expression above as a function
of the complex parameter s, and so see what happens near s = −α. The following
example shows how this works in practice.

Example 22.1. Let ϕ ∈ C∞c (∆) be a compactly supported function on ∆, and
consider the expression

F (s) = − 1

2πi

∫

∆

|t|2s−2ϕdt ∧ dt .

as a function of the complex parameter s. For Re s > 0, the function is well-defined,
and by differentiating under the integral sign, one sees that F (s) is a holomorphic
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function on the halfspace Re s > 0. Similarly, we obtain

F (j)(s) = (−1)j−1 1

2πi

∫

∆

L(t)j |t|2s−2ϕdt ∧ dt

by differentiating under the integral sign j times.
We want to understand how F (s) behaves near the critical line Re s = 0. We

can use integration by parts to prove the following nice identity:

(22.2) s2F (s) = − 1

2πi

∫

∆

|t|2s ∂
2ϕ

∂t∂t
dt ∧ dt .

Here is how this goes. Observe that

d
(
t|t|2s−2ϕdt

)
= s|t|2s−2ϕdt ∧ dt + t|t|2s−2 ∂ϕ

∂t
dt ∧ dt .

Recall that ϕ has compact support. From Stokes’ theorem, applied on the annulus
with inner radius ε > 0 and outer radius close to 1, we get

1

2πi

∫

|t|=ε
t|t|2s−2ϕdt = sF (s)− 1

2πi

∫

∆

t|t|2s−2 ∂ϕ

∂t
dt ∧ dt .

The left-hand side goes to zero with ε as long as Re s > 0, hence

sF (s) =
1

2πi

∫

∆

t|t|2s−2 ∂ϕ

∂t
dt ∧ dt .

If we repeat this argument, swapping the role of t and t, we arrive at (22.2).
The point is that the function on the right-hand side of (22.2) is holomorphic

on the larger halfspace Re s > −1. If we divide both sides by s2, we therefore get
a meromorphic extension of F (s) to the halfspace Re s > −1, with a single pole at
s = −1. To see what F (s) looks like near s = −1, we use the exponential series

|t|2s = e−sL(t) =

∞∑

j=0

(−1)jsj
L(t)j

j!
.

Substituting this into (22.2) gives

F (s) =

∞∑

j=0

sj−2(−1)j−1 1

2πi

∫

∆

L(t)j

j!

∂2ϕ

∂t∂t
dt ∧ dt .

The term with j = 0 vanishes (because the integral of an exact form with compact
support is zero); for the term j = 1, another application of Stokes’ theorem yields

1

2πi

∫

∆

L(t)
∂2ϕ

∂t∂t
dt ∧ dt = ϕ(0).

Nnear s = −1, the function F (s) therefore looks like

F (s) =
ϕ(0)

s
+

∞∑

j=2

sj−2(−1)j−1 1

2πi

∫

∆

L(t)j

j!

∂2ϕ

∂t∂t
dt ∧ dt .

It has a simple pole at s = 0, with residue Res0 F (s) = ϕ(0). By contrast,

− 1

2πi

∫

∆

L(t)j |t|2s−2ϕdt ∧ dt = (−1)jF (j)(s)

has a pole of order j + 1 at s = 0, but the residue is zero. So the conclusion is that
the term with j = 0 is distinguished by the presence of a residue.
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Going back to variations of Hodge structure, we can now pick out the coefficient
at |t|2α as follows. Choose a compactly supported function ϕ ∈ C∞c (∆) that is
identically 1 in a neighborhood of the origin; such a function is often called a cutoff
function. The calculation from above gives

h(v′α, v
′′
α) = Ress=−α

(
− 1

2πi

∫

∆

hV (1⊗ v′, 1⊗ v′′)|t|2s−2ϕdt ∧ dt

)
,

because the terms with |t|2βL(t)j and β > α contribute functions that are holo-
morphic at s = −α, and the terms with |t|2αL(t)j and j ≥ 1 contribute functions
with poles of order j + 1 and vanishing residue.

Definition of the induced pairing. We are now ready for the general definition.
It does not matter thatM is a polarized Hodge module – all we need is the existence
of a V-filtration. So let us suppose that M is a coherent D-module on the disk ∆,
and thatM admits a V-filtration V •M with the same properties as in Lecture 21.
Consider a distribution-valued sesquilinear pairing

hM : M⊗CM→ Db∆ .

For each real number α > −1, we are going to construct an induced pairing

hα : grαV ⊗CgrαV → C
on the vector space grαV = V αM/V >αM, with the property that

hα(Nx, y) = hα(x,Ny);

here N = t∂t − α is the nilpotent operator on grαV . The general idea should be
clear at this point. Choose a cutoff function ϕ ∈ C∞c (∆). For two local sections
m′,m′′ ∈ V αM, we are going to show that the function

(22.3) Fm′,m′′(s) =
〈
hM(m′,m′′), |t|2s−2ϕdt ∧ dt

〉

extends to a meromorphic function on the complex plane; that it is holomorphic
on the halfspace Re s > −α; and that it has a pole at the point s = −α. Moreover,
we will see that the residue of Fm′,m′′(s) at the point s = −α only depends on the
image of m′,m′′ in the quotient grαV . We can then define

(22.4) hα(m′,m′′) = Ress=−α

(
− 1

2πi
Fm′,m′′(s)

)

to obtain the desired pairing on grαV . For the sake of clarity, I will divide the
construction into several steps.

Step 1. Fix two real numbers α, β > −1, as well as two sections m′ ∈ V αM
and m′′ ∈ V βM. Initially, the problem with (22.3) is that distributions act on
compactly supported smooth forms, but the function |t|2s−2 is not smooth at t = 0.
Here we need to use a basic fact about distributions: every distribution is locally of
finite order. In other words, if D ∈ Db(∆) is a distribution, then for every compact
subset K ⊆ ∆, there is a constant C > 0 and an integer p ∈ N such that for every
test function η with Supp η ⊆ K, one has

(22.5)
∣∣∣〈D, ηdt ∧ dt〉

∣∣∣ ≤ C‖η‖Cp(K),

where the norm on the right-hand side is the supremum over all derivatives of η of
order ≤ p. In particular, D extends uniquely to bounded linear functional on the
space Cp(K). The smallest such integer p is called the order of D on K.

In our setting, we can use the support of the cutoff function ϕ as the compact set
K. Since V αM and V βM are coherent OX -modules, hence generated by finitely
many sections, the orders of all the distributions hM(m′,m′′) can be bounded by
a fixed integer p ∈ N, and an estimate as in (22.5) will hold with a constant C > 0
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that is independent of m′,m′′. Because the function |t|2s−2 is certainly in Cp(∆)
as long as Re(2s− 2) ≥ p, the expression

Fm′,m′′(s) =
〈
hM(m′,m′′), |t|2s−2ϕdt ∧ dt

〉

therefore makes sense for Re s > 1 + p
2 . The estimate in (22.5) then allows us to

“differentiate under the integral sign” and conclude that Fm′,m′′(s) is holomorphic
on the halfspace Re s > 1 + p

2 .

Step 2. We use the D-module structure on M to find relations between different
functions of this kind, similar to what we did in the example above. The sesquilin-
earity of the pairing gives hM(t∂tm

′,m′′) = t∂thM(m′,m′′), and therefore

Ft∂tm′,m′′(s) =
〈
t∂thM(m′,m′′), |t|2s−2ϕdt ∧ dt

〉

= −
〈
hM(m′,m′′), ∂t

(
t|t|2s−2ϕ

)
dt ∧ dt

〉

= −
〈
hM(m′,m′′),

(
s|t|2s−2ϕ+ t|t|2s−2 ∂ϕ

∂t

)
dt ∧ dt

〉

= −sFm′,m′′(s)−
〈
hM(m′,m′′), t|t|2s−2 ∂ϕ

∂t
dt ∧ dt

〉
.

Now the derivative ∂ϕ
∂t is identically zero in a neighborhood of the origin, and so

the product with t|t|2s−2 is a smooth function on the disk. In the above formula,
the last term is therefore holomorphic for every s ∈ C. So if we use ≡ to mean
“modulo entire functions”, we can write the result in the form

Ft∂tm′,m′′(s) ≡ −sFm′,m′′(s) ≡ Fm′,t∂tm′′(s).
The second half is proved in the same way, of course.

Step 3. The next task is to construct a meromorphic extension of Fm′,m′′(s) to the
complex plane. Here the key point is that t∂t − α acts nilpotently on grαV . We can
therefore find a number eα ∈ N such that

(t∂t − α)eαm′ ∈ V >αM,

If we keep applying this observation, we can produce a polynomial b(s) ∈ R[s], with
roots in the interval [α,∞), such that

b(t∂t)m
′ ∈ V α+kM,

where k ∈ N can be made as large as we please. Remembering that the multiplica-
tion map tk : V αM→ V α+kM is an isomorphism for α > −1, we get

b(t∂t)m
′ = tkm′k,

for some m′k ∈ V αM. (If you took my course on D-modules last semester, you
may recognize this as a special case of the Bernstein polynomial.) The identity in
Step 2 now gives us, modulo entire functions,

b(−s)Fm′,m′′(s) ≡ Fb(t∂t)m′,m′′(s) =
〈
hM(m′k,m

′′), tk|t|2s−2ϕdt ∧ dt
〉

Because the function on the right-hand side is holomorphic on the halfspace Re s >
1 + p

2 − k, this shows that Fm′,m′′(s) extends meromorphically to this larger half-
space; by increasing k, we therefore get a meromorphic extension to the complex
plane. Moreover, all roots of the polynomial b(−s) belong to the interval (−∞,−α],
and so Fm′,m′′(s) is actually holomorphic on the halfspace Re s > −α, possibly with
a pole at the point s = −α. By applying the same construction to m′′, the function
Fm′,m′′(s) is also holomorphic on the halfspace Re s > −β.
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Step 4. We can now complete the construction of the induced pairing. Suppose
that m′,m′′ ∈ V αM. The function Fm′,m′′(s) is holomorphic on the halfspace
Re s > −α, and possibly has a pole at the point s = −α, and so the residue

Ress=−α

(
− 1

2πi
Fm′,m′′(s)

)
∈ C

has a meaning. If either m′ or m′′ belong to V >αM, then the function Fm′,m′′(s)
is holomorphic on a slightly larger halfspace, hence the residue is zero. The
residue therefore depends only on the image of m′ and m′′ in the quotient grαV =
V αM/V >αM, and so (22.4) does define the desired pairing

hα : grαV ⊗C grαV → C.
Let us check that N = t∂t − α is its own adjoint. By the result from Step 2,

F(t∂t−α)m′,m′′(s) ≡ Fm′,(t∂t−α)m′′(s),

which only works of course because α ∈ R. Both sides therefore have the same
residue, and so hα(Nm′,m′′) = hα(m′, Nm′′).

Example 22.6. In the special case of a polarized variation of Hodge structure on ∆∗,
we showed at the beginning of the lecture that the general construction recovers
the pairing on grαV

∼= Eα(RS) that is used in Schmid’s results.

Example 22.7. Suppose that M is a vector bundle with connection on ∆. In this
case, M = V 0M, and we can take m′,m′′ to be flat sections. Then hM(m′,m′′) is
a constant function, and the example from earlier shows that the residue of

− 1

2πi

〈
hM(m′,m′′), |t|2s−2ϕdt ∧ dt

〉
= − 1

2πi

∫

∆

hM(m′,m′′)|t|2s−2ϕdt ∧ dt ·

at the point s = 0 is equal to the constant hM(m′,m′′). So in this case, the effect
of the construction is to simply restrict the flat pairing on the vector bundle to the
fiber over the origin.
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